flat assembler 1.40

Programmer’s Manual

Tomasz Grysztar

document version 0.5.6

Contents

1 Introduction 5
1.1 Compiler overview 5t
1.1.1 System requirements 5

1.1.2 Executing compiler from command line 5
1.1.3 Compiler messages 6
1.1.4 Output formats 7

1.2 Assembly syntax 7
1.2.1 Imstruction syntax 7

1.2.2 Data definitionso 9

1.2.3 Constants and labels 10
1.2.4 Numerical expressions 11
1.25 Jumpsandecalls 13

1.2.6 Sizesettings L 13

2 Instruction set 15
2.1 Intel Architecture instructions 15
2.1.1 Data movement instructions 15
2.1.2 Type conversion instructions 17
2.1.3 Binary arithmetic instructions 18
2.1.4 Decimal arithmetic instructions 20
2.1.5 Logical instructions 21
2.1.6 Control transfer instructions 23
2.1.7 I/Oinstructions 26
2.1.8 Strings operations L. 27
2.1.9 Flag control instructions 29
2.1.10 Conditional operations 30
2.1.11 Miscellaneous instructions 30
2.1.12 System instructions L. 32
2.1.13 FPU instructions 34
2.1.14 MMX instructions 34
2.1.15 SSE instructions L. 34

4 CONTENTS

2.2 Control directives 34
2.2.1 Repeating blocks of instructions 34
2.2.2 Conditional assembly 35
2.2.3 Other directives 36

2.3 Preprocessor directives 38
2.3.1 Including source files 38
2.3.2 Symbolic constantso 38
2.3.3 Macroinstructionso L. 39
2.3.4 Structures 45

2.4 Formatter directives L. 46
2.4.1 MZexecutable 46
2.4.2 Portable Executable 47
2.4.3 Common Object File Format 48

3 Tutorials 49

Chapter 1

Introduction

This chapter contains all the most important information you need to begin
using the flat assembler. If you are experienced assembly language program-
mer, you should read at least this chapter before using this compiler.

1.1 Compiler overview

Flat assembler is a fast assembly language compiler for the Intel Architecture
processors, which does multiple passes to optimize the size of generated ma-
chine code. It is self-compilable and versions for different operating systems
are provided. The fasm.exe file is a dual executable, which contains both
the DOS and Windows version, the Linux version is available in a separate
file. All the versions are designed to be used from the system command line
and they should not differ in behavior.

1.1.1 System requirements

All versions require the Intel Architecture 32-bit processor (at least 80386),
although they can produce programs for Intel Architecture 16-bit processors,
too. DOS version requires an OS compatible with MS DOS 2.0, Windows
version requires a Win3d2 console compatible with 3.1 version.

1.1.2 Executing compiler from command line

To execute flat assembler from the command line you need to provide two
parameters — first should be name of source file, second should be name of
destination file. After displaying short information about the program name
and version, compiler will read the data from source file and compile it. When

bt

6 CHAPTER 1. INTRODUCTION

the compilation is successful, compiler will write the generated code to the
destination file and display the summary of compilation process; otherwise
it will display the information about error that occurred.

The source file should be a text file, and can be created in any text editor.
Line breaks are accepted in both DOS and Unix standards, tabulators are
treated as spaces.

There are no additional command line options, flat assembler requires
only the source code to include the information it really needs. For example,
to specify output format you specify it by using the format directive at the
beginning of source.

1.1.3 Compiler messages

As it is stated above, after the successful compilation compiler displays the
compilation summary. It includes the information of how many passes was
done, how much time it took, and how many bytes were written into desti-
nation file. Here is an example of the compilation summary:

flat assembler version 1.40
38 passes, 5.3 seconds, 77824 bytes.

In case of error during the compilation process, program will display an error
message. For example, when compiler can’t find the input file, it will display
the following message:

flat assembler version 1.40
error: source file not found.

If the error is connected with a specific part of source code, the source line
that caused the error will be also displayed. Also placement of this line in
the source is given to help you finding this error, for example:

flat assembler version 1.40
example.asm [3]:

mob ax,1
error: illegal instruction.

It means that in the third line of the example.asm file compiler has encoun-
tered an unrecognized instruction. When the line that caused error contains
a macroinstruction, also number of erroneous line inside the macroinstruction
is gived:

1.2. ASSEMBLY SYNTAX 7

flat assembler version 1.40

example.asm [6] stoschar [2]:
stoschar 7

error: illegal instruction.

It means that the macroinstruction in the sixth line of the example.asm file
contained an unrecognized instruction in the second line of its definition.

1.1.4 Output formats

By default, when there is no format directive in source file, flat assembler
simply put generated instruction codes into output, creating this way flat
binary file. By default it generates 16-bit code, but you can always turn it
into the 16-bit or 32-bit mode by using use16 or use32 directive. Some of the
output formats switch into 32-bit mode, when selected — more information
about formats which you can choose can be found in 2.4.

All output code is always in the order in which it was entered into the
source file.

1.2 Assembly syntax

The information provided below is intended mainly for the assembler pro-
grammers that have been using some other assembly compilers before. If you
are beginner, please look for the assembly programming tutorials in chapter
3.

Flat assembler by default uses the Intel syntax for the assembly in-
structions, although you can customize it using the preprocessor capabilities
(macroinstructions and symbolic constants). It also has its own set of the
directives — the instructions for compiler.

All symbols defined inside the sources are case—sensitive.

1.2.1 Instruction syntax

Instructions in assembly language are separated by line breaks, and one in-
struction is expected to fill the one line of text. If line contains a semicolon
(except for the semicolons in quoted strings), the rest of this line is the com-
ment and compiler ignores it. If line contains \ characters, the next line
is attached at this point. Line should not contain anything but comments
(started with semicolon) after the \ character.

Every instruction consists of the mnemonic and the various number of
operands, separated with commas. The operand can be register, immediate

8 CHAPTER 1. INTRODUCTION

‘ Operator ‘ Bits ‘ Bytes ‘

byte 8 1
word 16 2
dword 32 4
fword 48 6
pword 48 6
qword 64 8
tword 80 10
dqword | 128 16

Table 1.1: Size operators.

value or a data addressed in memory, it can also be preceded by size operator
to define or override its size (table 1.1). Names of available registers you can
find in table 1.2, their sizes cannot be overridden. Immediate value can be
specified by any numerical expression.

When operand is a data in memory, the address of that data (also any nu-
merical expression, but it may contain registers) should be enclosed in square
brackets or preceded by ptr operator. For example instruction mov eax,3
will put the immediate value 3 into the eax register, instruction mov eax, [7]
will put the 32-bit value from the address 7 into eax and the instruction
mov byte [7],3 will put the immediate value 3 into the byte at address 7,
it can also be written as mov byte ptr 7,3. To specify which segment reg-
ister should be used for addressing, segment register name followed with a
colon should be put just before the address value (inside the square brackets
or after the ptr operator).

‘ Type ‘ Bits H ‘
8 al cl dl bl ah ch dh bh
General | 16 ax cxX dx bx sp bp si di

32 eax ecx edx ebx esp ebp esi edi
Segment | 16 es cs ss ds fs gs
Control | 32 || cr0 cr2 cr3 crd

Debug 32 drO drl dr2 dr3 dr4d dr5 dr6 dr7
FPU 80 st0 stl st2 st3 st4 stb st6 st7
MMX 64 mm0 mml mm2 mm3 mm4 mm5 mm6é mm7
SSE 128 || xmmO xmml xmm2 xmm3 xmm4 xmm5 =xmm6 xmm7

Table 1.2: Registers.

1.2. ASSEMBLY SYNTAX 9

1.2.2 Data definitions

To define data or reserve a space for it, use one of the directives listed in
table 1.3. The data definition directive should be followed by one or more of
numerical expressions, separated with commas. These expression define the
values for data cells of size depending on which directive is used. For example
db 1,2,3 will define the three bytes of values 1, 2 and 3 respectively.

The db and du directives also accept the quoted string values of any
length, which will be converted into chain of bytes when db is used and into
chain of words with zeroed high byte when du is used. For example db ’abc’
will define the three bytes of values 61, 62 and 63.

The dp directive and its synonym df accept the values consisting of two
numerical expressions separated with colon, the first value will become the
high word and the second value will become the low double word of the far
pointer value. The dt directive accepts only floating point values and creates
data in FPU temporary format.

The file is a special directive and its syntax is different. This directive
includes a chain of bytes from file and it should be followed by the quoted
file name, then optionally numerical expression specifying offset in file pre-
ceded by the colon, then — also optionally — comma and numerical expression
specifying count of bytes to include (if no count is specified, all data up to
the end of file is included).

Size Define | Reserve
(bytes) || data data
1 db rb
file

2 dw r™w
du

4 dd rd

6 dp rp
df rf

8 dq rq

10 dt rt

Table 1.3: Data directives.

The data reservation directive should be followed by only one numerical
expression, and this value defines how many cells of the specified size should
be reserved. All data definition directives also accept the 7 value, which
means that this cell should not be initialized to any value and the effect

10 CHAPTER 1. INTRODUCTION

is the same as by using the data reservation directive. The uninitialized
data may not be included in the output file, so its values should be always
considered unknown.

1.2.3 Constants and labels

In the numerical expressions you can also use constants or labels instead
of numbers. To define the constant or label you should use the specific
directives. Each label can be defined only once and it is accessible from the
any place of source (even before it was defined). Constant can be redefined
many times, but in this case it is accessible only after it was defined, and
is always equal to the value from last definition before the place where it’s
used. When constant is defined only once in source, it’s — like the label —
accessible from anywhere.

The definition of constant consists of name of the constant followed by the
= character and numerical expression, which after calculation will become the
value of constant. This value is always calculated at the time the constant is
defined. For example you can define count constant by using the directive
count = 17, and then use it in the assembly instructions, like mov cx,count
— which will become mov c¢x,17 during the compilation process.

There are different ways to define labels. The simplest is to follow the
name of label by the colon, this directive can even be followed by the other
instruction in the same line. It defines the label whose value is equal to
offset of the point where it’s defined. This method is usually used to label
the places in code. The other way is to follow the name of label (without a
colon) by some data directive. It defines the label with value equal to offset
of the beginning of defined data, and remembered as a label for data with
cell size as specified for that data directive in table 1.3.

The label can be treated as constant of value equal to offset of labelled
code or data. For example when you define data using the labelled directive
char db 224, to put the offset of this data into bx register you should use
mov bx,char instruction, and to put the value of byte addressed by char
label to d1 register, you should use mov dl, [char] (or mov dl,ptr char).
But when you try to assemble mov ax, [char], it will cause an error, because
fasm compares the sizes of operands, which should be equal. You can force
assembling that instruction by using size override: mov ax,word [char],
but remember that this instruction will read the two bytes beginning at
char address, while it was defined as a one byte.

The last and the most flexible way to define labels is to use label direc-
tive. This directive should be followed by the name of label, then optionally
size operator and then — also optionally at operator and the numerical ex-

1.2. ASSEMBLY SYNTAX 11

pression defining the address at which this label should be defined. For
example label wchar word at char will define a new label for the 16-bit
data at the address of char. Now the instruction mov ax, [wchar] will be af-
ter compilation the same as mov ax,word [char]. If no address is specified,
label directive defines the label at current offset. Thus mov [wchar] ,57568
will copy two bytes while mov [char],224 will copy one byte to the same
address.

The label whose name begins with dot is treated as local label, and its
name is attached to the name of last global label (with name beginning with
anything but dot) to make the full name of this label. So you can use the
short name (beginning with dot) of this label anywhere before the next global
label is defined, and in the other places you have to use the full name. Label
beginning with two dots are the exception - they are like global, but they
don’t become the new prefix for local labels.

The @@ name means anonymous label, you can have defined many of them
in the source. Symbol @b (or equivalent @r) references the nearest preced-
ing anonymous label, symbol @f references the nearest following anonymous
label. These special symbol are case—insensitive.

The load directive allows to define constant with binary value loaded
from a file during the assembly process. This directive should be followed
by the name of constant, then optionally size operator, then from operator
and quoted file name, which can be also followed by a colon and numerical
expression specifying offset in file. The size operator has unusual meaning in
case — it states how many bytes (up to 8) have to be loaded to form the binary
value of constant. If no size operator is specified, one byte is loaded (thus
value is in range from 0 to 255). With giving only the offset value instead of
quoted file name you can also load a value from the already assembled code.
The given offset should be a valid address in currently generated code space,
the loaded data cannot exceed current offset.

1.2.4 Numerical expressions

In the above examples all the numerical expressions were the simple num-
bers, constants or labels. But they can be more complex, by using the
arithmetical or logical operators for calculations at compile time. All these
operator with their priority values are listed in table 1.4. The operations
with higher priority value will be calculated first, you can of course change
this behaviour by putting some parts of expression into parenthesis. The +,
-, * and / are standard arithmetical operations, mod calculates the remainder
from division. The and, or, xor, shl, shr and not perform the same logical
operations as assembly instructions of those names. The rva is specific to

12 CHAPTER 1. INTRODUCTION

PE output format and performs the conversion of an address into the RVA.

‘ Priority ‘ Operators ‘

0 +
1 *
/
2 mod
3 and
or
xXor
4 shl
shr
5) not
6 rva

Table 1.4: Arithmetical and logical operators by priority.

The numbers in the expression are by default treated as a decimal, bi-
nary numbers should have the b letter attached at the end, octal number
should begin with 0 digit (like in C language) or end with o letter, hexadec-
imal numbers should begin with 0x characters (like in C language) or with
the $ character (like in Pascal language) or they should end with h letter.
Also quoted string, when encountered in expression, will be converted into
numbers — the first character will become the least significant byte of number.

The numerical expression used as an address value can also contain any
of general registers used for addressing, they can be added and multiplied by
appropriate values, as it is allowed for Intel Architecture instructions.

There are also two special symbols that can be used inside the numerical
expression. First is $, which is always equal to the value of current offset.
Second is %, which is the number of current repeat in parts of code that are
repeated using some special directives (see 2.2).

The numerical expression can also consist of single floating point value
(flat assembler does not allow any floating point operations at compilation
time) in the scientific notation, they can end with the f letter to be recog-
nized, otherwise they should contain at least one of the . or E characters.

1.2. ASSEMBLY SYNTAX 13

1.2.5 Jumps and calls

The operand of any jump or call instruction can be preceded not only by the
size operator, but also by one of the operators specifying type of the jump:
near of far. For example, when assembler is in 16—bit mode, instruction
jmp dword [0] will become the far jump and when assembler is in 32-bit
mode, it will become the near jump. To force this instruction to be treated
differently, use the jmp near dword [0] or jmp far dword [0] form.
When operand of near jump is the immediate value, assembler will gener-
ate the shortest variant of this jump instruction if possible (but won’t create
32-bit instruction in 16-bit mode nor 16-bit instruction in 32-bit mode, un-
less there is a size operator stating it). By specifying the size operator you can
force it to always generate long variant (for example jmp word 0 in 16-bit
mode and jmp dword O in 32-bit mode) or to always generate short variant
and terminate with an error when it’s impossible (for example jmp byte 0).

1.2.6 Size settings

When instruction uses some memory addressing, by default the shorter 8-bit
form is generated if only address value fits in range, but it can be overrid-
den using the word or dword operator before the address inside the square
brackets (or after the ptr operator).

Instructions adc, add, and, cmp, or, sbb, sub and xor with first operand
being 16-bit or 32-bit are by default generated in shortened 8-bit form when
the second operand is immediate value fitting in the range for signed 8-bit
values. It also can be overridden by putting the word or dword operator
before the immediate value.

Immediate value as an operand for push instruction without a size oper-
ator is by default treated as a word value if assembler is in 16-bit mode and
as a double word value if assembler is in 32-bit mode, shorter 8-bit form
of this instruction is used if possible, word or dword size operator forces the
push instruction to be generated in longer form for specified size.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Instruction set

This chapter provides the detailed information about the instructions and
directives supported by flat assembler. Directives for defining constants and
labels were already discussed in 1.2.3, all other directives will be described
later in this chapter.

2.1 Intel Architecture instructions

In this section you can find both the information about the syntax and pur-
pose the assembly language instructions. If you need more technical infor-
mation, look for the Intel Architecture Software Developer’s Manual.

Assembly instructions consist of the mnemonic (instruction’s name) and
from zero to three operands. If there are two or more operands, usually first is
the destination operand and second is the source operand. Each operand can
be register, memory or immediate value (see 1.2 for details about syntax of
operands). After description of each instruction there are provided examples
of different combinations of operands (if the instruction has any).

2.1.1 Data movement instructions

mov transfers a byte, word or double word from the source operand to the
destination operand. It can transfer data between general registers, from
the general register to memory, or from memory to general register, but it
cannot move from memory to memory. It can also transfer an immediate
value to general register or memory, segment register to general register or
memory, general register or memory to segment register, control or debug
register to general register and general register to control or debug register.
The mov can be assembled only if the size of source operand and size of

15

16 CHAPTER 2. INSTRUCTION SET

destination operand are the same. Below are the examples for each of the
allowed combinations:

mov bx,ax ; general register to general register
mov [char],al ; general register to memory
mov bl, [char] ; memory to general register
mov dl,32 ; immediate value to general register
mov [char],32 ; immediate value to memory
mov ax,ds ; segment register to general register
mov [bx],ds ; segment register to memory
mov ds,ax ; general register to segment register
mov ds, [bx] ; memory to segment register
mov eax,cr0 ; control register to general register
mov cr3,ebx ; general register to control register

xchg swaps the contents of two operands. It can swap two byte operands,
two word operands or two double word operands. Order of operands is not
important. The operands may be two general registers, or general register
with memory. For example:

xchg ax,bx ; swap two general registers
xchg al, [char] ; swap register with memory

push decrements the stack frame pointer (esp register), then transfers the
operand to the top of stack indicated by esp. The operand can be memory,
general register, segment register or immediate value of word or double word
size. If operand is an immediate value and no size is specified, it is by default
treated as a word value if assembler is in 16-bit mode and as a double word
value if assembler is in 32-bit mode. If more operands follow in the same
line (separated only with spaces, not commas), compiler will assemble chain
of the push instructions with these operands. The examples are with single
operands:

push ax ; store general register
push es ; Store segment register
push [bx] ; store memory

push 1000h ; store immediate wvalue

pusha saves the contents of the eight general register on the stack. This
instruction has no operands. There are two version of this instruction, one
16-bit and one 32-bit, assembler automatically generates the right version for
current mode, but it can be overridden by using pushaw or pushad mnemonic

2.1. INTEL ARCHITECTURE INSTRUCTIONS 17

to always get the 16-bit or 32-bit version. The 16-bit version of this instruc-
tion pushes general registers on the stack in the following order: ax, cx, dx,
bx, the initial value of sp before ax was pushed, bp, si and di. The 32-bit
version pushes equivalent 32-bit general registers in the same order.

pop transfers the word or double word at the current top of stack to the
destination operand, and then increments esp to point to the new top of
stack. The operand can be memory, general register or segment register. If
more operands separated with spaces follow in the same line, compiler will
assemble chain of the pop instructions with these operands.

pop bx ; restore general register
pop ds ; restore segment register
pop [sil ; restore memory

popa restores the registers saved on the stack by pusha instruction, except
for the saved value of sp (or esp), which is ignored. This instruction has no
operands. To force assembling 16-bit or 32-bit version of this instruction
use popaw or popad mnemonic.

2.1.2 Type conversion instructions

The type conversion instructions convert bytes into words, words into double
words, and double words into quad words. These conversion can be done
using the sign extension or zero extension. The sign extension fills the extra
bits of the larger item with the value of the sign bit of the smaller item, the
zero extension simply fills them with zeros.

cwd and cdq double the size of value ax or eax register respectively and
store the extra bits into the dx or edx register. The conversion is done using
the sign extension. These instructions have no operands.

cbw extends the sign of the byte in al throughout ax, and cwde extends
the sign of the word in ax throughout eax. These instruction also have no
operands.

movsx converts a byte to word or double word and a word to double word
using the sign extension. movzx does the same, but it uses the zero extension.
The source operand can be general register or memory, while the destination
operand must be a general register. For example:

movsx ax,al ; byte register to word register

movsx edx,dl ; byte register to double word register
movsx eax,ax ; word register to double word register
movsx ax,byte [bx] ; byte memory to word register

movsx edx,byte [bx] ; byte memory to double word register
movsx eax,word [bx] ; word memory to double word register

18 CHAPTER 2. INSTRUCTION SET

2.1.3 Binary arithmetic instructions

add replaces the destination operand with the sum of the source and desti-
nation operands and sets CF if overflow has occurred. The operands may
be bytes, words or double words. The destination operand can be general
register or memory, the source operand can be general register or immediate
value, it can also be memory if the destination operand is register.

add ax,bx ; add register to register

add ax, [si] ; add memory to register

add [di],al ; add register to memory

add al, 48 ; add immediate value to register
add [char],48 ; add immediate value to memory

adc sums the operands, adds one if CF is set, and replaces the destination
operand with the result. Rules for the operands are the same as for the add
instruction. An add followed by multiple adc instructions can be used to add
numbers longer than 32 bits.

inc adds one to the operand. It does not affect CF. The operand can
be general register or memory, size of operand can be byte, word or double
word.

inc ax ; lncrement register by one
inc byte [bx] ; increment memory by one

sub subtracts the source operand from the destination operand and re-
places the destination operand with the result. If a borrow is required, the
CF is set. Rules for the operands are the same as for the add instruction.

sbb subtracts the source operand from the destination operand, subtracts
one if CF is set, and stores the result to the destination operand. Rules for
the operands are the same as for the add instruction. A sub followed by
multiple sbb instructions may be used to subtract numbers longer than 32
bits.

dec subtracts one from the operand. It does not affect CF. Rules for the
operand are the same as for the inc instruction.

cmp subtracts the source operand from the destination operand. It up-
dates the flags as the sub instruction, but does not alter the source and
destination operands. Rules for the operands are the same as for the sub
instruction.

neg subtracts a signed integer operand from zero. The effect of this
instructon is to reverse the sign of the operand from positive to negative or
from negative to positive. Rules for the operand are the same as for the inc
instruction.

2.1. INTEL ARCHITECTURE INSTRUCTIONS 19

xadd exchanges the destination operand with the source operand, then
loads the sum of the two values into the destination operand. Rules for the
operands are the same as for the add instruction.

All the above binary arithmetic instruction update SF, ZF, PF and OF
flags. SF is always set to the same value as the sign bit of the result, ZF is
set when all bits of result are zero, PF is set when low order eight bits of
result contain an even number of set bits, OF is set if result is too large a
positive number or too small a negative number (excluding sign bit) to fit in
destination operand.

mul performs an unsigned multiplication of the operand and the accumu-
lator. If the operand is a byte, the processor multiplies it by the contents of
al and returns the 16-bit result to ah and al. If the operand is a word, the
processor multiplies it by the contents of ax and returns the 32-bit result to
dx and ax. If the operand is a double word, the processor multiplies it by
the contents of eax and returns the 64-bit result in edx and eax. mul sets
CF and OF when the upper half of the result is nonzero, otherwise they are
cleared. Rules for the operand are the same as for the inc instruction.

imul performs a signed multiplication operation. This instruction has
three variations. First has one operand and behaves in the same way as the
mul instruction. Second has two operands, in this case destination operand
is multiplied by the source operand and the result replaces the destination
operand. Destination operand must be a general register, it can be word or
double word, source operand can be general register, memory or immediate
value. The immediate value can be a byte, in this case processor automati-
cally does the sign extension to it before performing the multiplication. Third
form has three operands, the destination operand must be a general register,
word or double word in size, source operand can be general register or mem-
ory, and third operand must be an immediate value. The source operand is
multiplied by the immediate value and the result is stored in the destina-
tion register. All the three forms calculate the product to twice the size of
operands and set CF and OF when the upper half of the result is nonzero,
but second and third form truncate the product to the size of operands.
So second and third forms can be also used for unsigned operands because,
whether the operands are signed or unsigned, the lower half of the product
is the same. Below are the examples for all three forms:

imul bl ; accumulator by register
imul word [si] ; accumulator by memory
imul bx,cx ; register by register
imul bx, [sil ; register by memory

imul bx,10 ; register by immediate value

20 CHAPTER 2. INSTRUCTION SET

imul ax,bx,10 ; register by immediate value to register
imul ax,[si],10 ; memory by immediate value to register

div performs an unsigned division of the accumulator by the operand.
The dividend (the accumulator) is twice the size of the divisor (the operand),
the quotient and remainder have the same size as the divisor. If divisor is
byte, the dividend is taken from ax register, the quotient is stored in al and
the remainder is stored in ah. If divisor is word, the upper half of dividend
is taken from dx, the lower half of dividend is taken from ax, the quotient is
stored in ax and the remainder is stored in dx. If divisor is double word, the
upper half of dividend is taken from edx, the lower half of dividend is taken
from eax, the quotient is stored in eax and the remainder is stored in edx.
Rules for the operand are the same as for the mul instruction.

idiv performs a signed division of the accumulator by the operand. It
uses the same registers as the div instruction, and the rules for the operand
are the same.

2.1.4 Decimal arithmetic instructions

Decimal arithmetic is performed by combining the binary arithmetic instruc-
tions (already described in the prior section) with the decimal arithmetic
instructions. The decimal arithmetic instructions are used to adjust the re-
sults of a previous binary arithmetic operation to produce a valid packed
or unpacked decimal result, or to adjust the inputs to a subsequent binary
arithmetic operation so the operation will produce a valid packed or unpacked
decimal result.

daa adjusts the result of adding two valid packed decimal operands in al.
daa must always follow the addition of two pairs of packed decimal numbers
(one digit in each half-byte) to obtain a pair of valid packed decimal digits
as results. The carry flag is set if carry was needed. This instruction has no
operands.

das adjusts the result of subtracting two valid packed decimal operands
in al. das must always follow the subtraction of one pair of packed decimal
numbers (one digit in each half-byte) from another to obtain a pair of valid
packed decimal digits as results. The carry flag is set if a borrow was needed.
This instruction has no operands.

aaa changes the contents of register al to a valid unpacked decimal num-
ber, and zeroes the top four bits. aaa must always follow the addition of two
unpacked decimal operands in al. The carry flag is set and ah is incremented
if a carry is necessary. This instruction has no operands.

2.1. INTEL ARCHITECTURE INSTRUCTIONS 21

aas changes the contents of register al to a valid unpacked decimal num-
ber, and zeroes the top four bits. aas must always follow the subtraction of
one unpacked decimal operand from another in al. The carry flag is set and
ah decremented if a borrow is necessary. This instruction has no operands.

aam corrects the result of a multiplication of two valid unpacked decimal
numbers. aam must always follow the multiplication of two decimal numbers
to produce a valid decimal result. The high order digit is left in ah, the
low order digit in al. The generalized version of this instruction allows
adjustment of the contents of the ax to create two unpacked digits of any
number base. The standard version of this instruction has no operands, the
generalized version has one operand — an immediate value specifying the
number base for the created digits.

aad modifies the numerator in ah and ah to prepare for the division of
two valid unpacked decimal operands so that the quotient produced by the
division will be a valid unpacked decimal number. ah should contain the high
order digit and al the low order digit. This instruction adjusts the value and
places the result in al, while ah will contain zero. The generalized version
of this instruction allows adjustment of two unpacked digits of any number
base. Rules for the operand are the same as for the aam instruction.

2.1.5 Logical instructions

not inverts the bits in the specified operand to form a one’s complement of
the operand. It has no effect on the flags. Rules for the operand are the
same as for the inc instruction.

and, or and xor instructions perform the standard logical operations.
They update the SF, ZF and PF flags. Rules for the operands are the same
as for the add instruction.

bt, bts, btr and btc instructions operate on a single bit which can be
in memory or in a general register. The location of the bit is specified as
an offset from the low order end of the operand. The value of the offset is
the taken from the second operand, it either may be an immediate byte or a
general register. These instructions first assign the value of the selected bit
to CF. bt instruction does nothing more, bts sets the selected bit to 1, btr
resets the selected bit to 0, btc changes the bit to its complement. The first
operand can be word or double word.

bt ax,15 ; test bit in register
bts word [bx],15 ; test and set bit in memory
btr ax,cx ; test and reset bit in register

btc word [bx],cx ; test and complement bit in memory

22 CHAPTER 2. INSTRUCTION SET

bsf and bsr instructions scan a word or double word for first set bit and
store the index of this bit into destination operand, which must be general
register. The bit string being scanned is specified by source operand, it may
be either general register or memory. The ZF flag is set if the entire string
is zero (no set bits are found); otherwise it is set. If no set bit is found, the
value of the destination register is undefined. bsf from low order to high
order (starting from bit index zero). bsr scans from high order to low order
(starting from bit index 15 of a word or index 31 of a double word).

bsf ax,bx ; scan register forward
bsr ax, [si] ; Scan memory reverse

shl shifts the destination operand left by the number of bits specified in
the second operand. The destination operand can be byte, word, or double
word general register or memory. The second operand can be an immediate
value or the cl register. The processor shifts zeros in from the right (low
order) side of the operand as bits exit from the left side. The last bit that
exited is stored in CF. sal is a synonym for shl.

shl al,1 ; shift register left by one bit
shl byte [bx],1 ; shift memory left by one bit
shl ax,cl ; shift register left by count from cl

shl word [bx],cl ; shift memory left by count from cl

shr and sar shift the destination operand right by the number of bits
specified in the second operand. Rules for operands are the same as for
the shl instruction. shr shifts zeros in from the left side of the operand as
bits exit from the right side. The last bit that exited is stored in CF. sar
preserves the sign of the operand by shifting in zeros on the left side if the
value is positive or by shifting in ones if the value is negative.

shld shifts bits of the destination operand to the left by the number of
bits specified in third operand, while shifting high order bits from the source
operand into the destination operand on the right. The source operand
remains unmodified. The destination operand can be a word or double word
general register or memory, the source operand must be a general register,
third operand can be an immediate value or the cl register.

shld ax,bx,1 ; shift register left by one bit
shld [di],bx,1 ; shift memory left by one bit
shld ax,bx,cl ; shift register left by count from cl

shld [di],bx,cl ; shift memory left by count from cl

2.1. INTEL ARCHITECTURE INSTRUCTIONS 23

shrd shifts bits of the destination operand to the right, while shifting low
order bits from the source operand into the destination operand on the left.
The source operand remains unmodified. Rules for operands are the same as
for the shld instruction.

rol and rcl rotate the byte, word or double word destination operand
left by the number of bits specified in the second operand. For each rotation
specified, the high order bit that exits from the left of the operand returns at
the right to become the new low order bit. rcl additionally puts in CF each
high order bit that exits from the left side of the operand before it returns
to the operand as the low order bit on the next rotation cycle. Rules for
operands are the same as for the shl instruction.

ror and rcr rotate the byte, word or double word destination operand
right by the number of bits specified in the second operand. For each rotation
specified, the low order bit that exits from the right of the operand returns at
the left to become the new high order bit. rcr additionally puts in CF each
low order bit that exits from the right side of the operand before it returns
to the operand as the high order bit on the next rotation cycle. Rules for
operands are the same as for the shl instruction.

test performs the same action as the and instruction, but it does not
alter the destination operand, only updates flags. Rules for the operands are
the same as for the and instruction.

bswap reverses the byte order of a 32-bit general register: bits 0 through 7
are swapped with bits 24 through 31, and bits 8 through 15 are swapped with
bits 16 through 23. This instruction is provided for converting little-endian
values to big-endian format and vice versa.

bswap edx ; swap bytes in register

2.1.6 Control transfer instructions

jmp unconditionally transfers control to the target location. The destina-
tion address can be specified directly within the instruction or indirectly
through a register or memory, the acceptable size of this address depends on
whether the jump is near or far (it can be specified by preceding the operand
with near or far operator) and whether the instruction is 16-bit or 32-bit.
Operand for near jump should be word size for 16-bit instruction or the dword
size for 32-bit instruction. Operand for far jump should be dword size for
16-bit instruction or pword size for 32-bit instruction. A direct jmp instruc-
tion includes the destination address as part of the instruction, the operand
specifying address should be the numerical expression for near jump, or two
numerical expressions separated with colon for far jump, the first specifies

24 CHAPTER 2. INSTRUCTION SET

selector of segment, the second is the offset within segment. An indirect jmp
instruction obtains the destination address indirectly through a register or a
pointer variable, the operand should be general register or memory. See also
1.2.5 for more details.

jmp 100h ; direct near jump
jmp OFFFFh:0 ; direct far jump
jmp ax ; indirect near jump
jmp pword [ebx] ; indirect far jump

call transfers control to the procedure, saving on the stack the address of
the instruction following the call for later use by a ret (return) instruction.
Rules for the operands are the same as for the jmp instruction, but the call
has no short variant of direct instruction and thus it not optimized.

ret, retn and retf instructions terminate the execution of a procedure
and transfers control back to the program that originally invoked the proce-
dure using the address that was stored on the stack by the call instruction.
ret is the equivalent for retn, which returns from the procedure that was
executed using the near call, while retf return from the procedure that was
executed using the far call. These instructions default to the size of ad-
dress appropriate for the current code setting, but the size of address can
be forced to 16-bit by using the retw, retnw and retfw mnemonics, and to
32-bit by using the retd, retnd and retfd mnemonics. All these instruc-
tions may optionally specify an immediate operand, by adding this constant
to the stack pointer, they effectively remove any arguments that the calling
program pushed on the stack before the execution of the call instruction.

iret returns control to an interrupted procedure. It differs from ret in
that it also pops the flags from the stack into the flags register. The flags
are stored on the stack by the interrupt mechanism. It defaults to the size of
return address appropriate for the current code setting, but it can be forced
to use 16-bit or 32-bit address by using the iretw or iretd mnemonic.

The conditional transfer instructions are jumps that may or may not
transfer control, depending on the state of the CPU flags when the instruc-
tion executes. The mnemonics for conditional jumps may be obtained by
attaching the condition mnemonic (see table 2.1) to the j mnemonic, for
example jc instruction will transfer the control when the CF flag is set. The
conditional jumps can be near and direct only, and can be optimized (see
1.2.5), the operand should be an immediate value specifying target address.

The loop instructions are conditional jumps that use a value placed in
cx (or ecx) to specify the number of repetitions of a software loop. All
loop instructions automatically decrement cx (or ecx) and terminate the
loop (don’t transfer the control) when cx (or ecx) is zero. It uses cx or ecx

2.1. INTEL ARCHITECTURE INSTRUCTIONS

Mnemonic ‘ Condition tested Description
o OF =1 overflow
no OF =0 not overflow
c carry
b CF =1 below
nae not above nor equal
nc not carry
ae CF =0 above or equal
nb not below
e 7F =1 equal
z Zero
ne ZF =0 not equal
nz not zero
be CFor ZF =1 jump if below or equal
na not above
a CF or ZF =0 above
nbe not below nor equal
S SF =1 sign
ns SF =0 not sign
P PF =1 parity
pe parity even
np PF =0 not parity
po parity odd
1 SF xor OF =1 less
nge not greater nor equal
ge SF xor OF =0 greater or equal
nl not less
le (SF xor OF) or ZF =1 less or equal
ng not greater
g (SF xor OF) or ZF =0 greater
nle not less nor equal

Table 2.1: Conditions.

25

26 CHAPTER 2. INSTRUCTION SET

whether the current code setting is 16-bit or 32-bit, but it can be forced to
use cx with the loopw mnemonic or to use ecx with the loopd mnemonic.
loope and loopz are the synonyms for the same instruction, which acts as the
standard loop, but also terminates the loop when ZF flag is set. loopew and
loopzw mnemonics force them to use cx register while looped and loopzd
force them to use ecx register. loopne and loopnz are the synonyms for
the same instructions, which acts as the standard loop, but also terminate
the loop when ZF flag is not set. loopnew and loopnzw mnemonics force
them to use cx register while loopned and loopnzd force them to use ecx
register. Every loop instruction needs an operand being an immediate value
specifying target address, it can be only short jump (in the range of 128
bytes back and 127 bytes forward from the address of instruction following
the loop instruction).

jcxz branches to the label specified in the instruction if it finds a value
of zero in cx, jecxz does the same, but checks the value of ecx instead of
cx. Rules for the operands are the same as for the loop instruction.

int activates the interrupt service routine that corresponds to the number
specified as an operand to the instruction, the number should be in range from
0 to 255. The interrupt service routine terminates with an iret instruction
that returns control to the instruction that follows int. int3 mnemonic
codes the short (one byte) trap that invokes the interrupt 3. into instruction
invokes the interrupt 4 if the OF flag is set.

bound verifies that the signed value contained in the specified register lies
within specified limits. An interrupt 5 occurs if the value contained in the
register is less than the lower bound or greater than the upper bound. It
needs two operands, the first operand specifies the register being tested, the
second operand should be memory address for the two signed limit values.
The operands can be word or dword in size.

bound ax, [bx] ; check word for bounds
bound eax, [esi] ; check double word for bounds

2.1.7 1I/0 instructions

in transfers a byte, word, or double word from an input port to al, ax, or
eax. I/O ports can be addressed either directly, with the immediate byte
value coded in instruction, or indirectly via the dx register. The destination
operand should be al, ax, or eax register. The source operand should be an
immediate value in range from 0 to 255, or dx register.

in al,20h ; input byte from port 20h
in ax,dx ; input word from port addressed by dx

2.1. INTEL ARCHITECTURE INSTRUCTIONS 27

out transfers a byte, word, or double word to an output port from al,
ax, or eax. The program can specify the number of the port using the
same methods as the in instruction. The destination operand should be an
immediate value in range from 0 to 255, or dx register. The source operand
should be al, ax, or eax register.

out 20h,ax ; output word to port 20h
out dx,al ; output byte to port addressed by dx

2.1.8 Strings operations

The string operations operate on one element of a string. A string element
may be a byte, a word, or a double word. The string elements are addressed
by si and di (or esi and edi) registers. After every string operation si
and/or di (or esi and/or edi) are automatically updated to point to the
next element of the string. If DF (direction flag) is zero, the index registers
are incremented, if DF is one, they are decremented. The amount of the
increment or decrement is 1, 2, or 4 depending on the size of the string
element. Every string operation instruction has short forms which has no
operands and use si and/or di when the code type is 16-bit, and esi and/or
edi when the code type is 32-bit. si and esi by default addresses data in
the segment selected by ds, di and edi always addresses data in the segment
selected by es. Short form is obtained by attaching to the mnemonic of string
operation letter specifying the size of string element, it should be b for byte
element, w for word element, and d for double word element. Full form of
string operation needs operands providing the size operator and the memory
addresses, which can be si or esi with any segment prefix, di or edi always
with es segment prefix.

movs transfers the string element pointed to by si (or esi) to the location
pointed to by di (or edi). Size of operands can be byte, word or dword. The
destination operand should be memory addressed by di or edi, the source
operand should be memory addressed by si or esi with any segment prefix.

movs byte [di], [si] ; transfer byte
movs word [es:di],[ss:si] ; transfer word
movsd ; transfer double word

cmps subtracts the destination string element from the source string ele-
ment and updates the flags AF, SF, PF, CF and OF, but it does not change
any of the compared elements. If the string elements are equal, ZF is set,
otherwise it is cleared. The first operand for this instruction should be the
source string element addressed by si or esi with any segment prefix, the

28 CHAPTER 2. INSTRUCTION SET

second operand should be the destination string element addressed by di or
edi.

cmpsb ; compare bytes
cmps word [ds:si],[es:di] ; compare words
cmps dword [fs:esi], [edi] ; compare double words

scas subtracts the destination string element from al, ax, or eax (de-
pending on the size of string element) and updates the flags AF, SF, ZF, PF,
CF and OF. If the values are equal, ZF is set, otherwise it is cleared. The
operand should be the destination string element addressed by di or edi.

scas byte [es:di] ; scan byte
scasw ; scan word
scas dword [es:edil ; scan double word

lods places the source string element into al, ax, or eax. The operand
should be the source string element addressed by si or esi with any segment
prefix.

lods byte [ds:si] ; load byte
lods word [cs:si] ; load word
lodsd ; load double word

stos places the value of al, ax, or eax into the destination string element.
Rules for the operand are the same as for the scas instruction.

ins transfers a byte, word, or double word from an input port addressed
by dx register to the destination string element. The destination operand
should be memory addressed by di or edi, the source operand should be the
dx register.

insb ; input byte
ins word [es:di],dx ; input word
ins dword [edi],dx ; input double word

outs transfers the source string element to an output port addressed by
dx register. The destination operand should be the dx register and the source
operand should be memory addressed by si or esi with any segment prefix.

outs dx,byte [si] ; output byte
outsw ; output word
outs dx,dword [gs:esi] ; output double word

2.1. INTEL ARCHITECTURE INSTRUCTIONS 29

The repeat prefixes rep, repe/repz, and repne/repnz specify repeated
string operation. When a string operation instruction has a repeat prefix,
the operation is executed repeatedly, each time using a different element of
the string. The repetition terminates when one of the conditions specified
by the prefix is satisfied. All three prefixes automatically decrease cx or ecx
register (depending whether string operation instruction uses the 16-bit or
32-bit addressing) after each operation and repeat the associated operation
until cx or ecx is zero. repe/repz and repne/repnz are used exclusively
with the scas and cmps instructions (described below). When these prefixes
are used, repetition of the next instruction depends on the zero flag (ZF)
also, repe and repz terminate the execution when the ZF is zero, repne and
repnz terminate the execution when the ZF is set.

rep movsd ; transfer multiple double words
repe cmpsb ; compare bytes until not equal

2.1.9 Flag control instructions

The flag control instructions provide a method for directly changing the state
of bits in the flag register. All instructions described in this section have no
operands.

stc sets the CF (carry flag) to 1, clc zeroes the CF, cmc changes the CF
to its complement. std sets the DF (direction flag) to 1, c1d zeroes the DF,
sti sets the IF (interrupt flag) to 1 and therefore enables the interrupts, cli
zeroes the IF and therefore disables the interrupts.

lahf copies SF, ZF, AF, PF, and CF to bits 7, 6, 4, 2, and 0 of the ah
register. The contents of the remaining bits are undefined. The flags remain
unaffected.

sahf transfers bits 7, 6, 4, 2, and 0 from the ah register into SF, ZF, AF,
PF, and CF.

pushf decrements esp by two or four and stores the low word or double
word of flags register at the top of stack, size of stored data depends on the
current code setting. pushfw variant forces storing the word and pushfd
forces storing the double word.

popf transfers specific bits from the word or double word at the top of
stack, then increments esp by two or four, this value depends on the current
code setting. popfw variant forces restoring from the word and popfd forces
restoring from the double word.

30 CHAPTER 2. INSTRUCTION SET

2.1.10 Conditional operations

The instructions obtained by attaching the condition mnemonic (see table
2.1) to the set mnemonic set a byte to one if the condition is true and set the
byte to zero otherwise. The operand should be an 8-bit be general register
or the byte in memory.

setne al ; set al if zero flag cleared
seto byte [bx] ; set byte if overflow

setalc instruction sets the all bits of al register when the carry flag is
set and zeroes the al register otherwise. This instruction has no arguments.

The instructions obtained by attaching the condition mnemonic to the
cmov mnemonic transfer the word or double word from the general register
or memory to the general register only when the condition is true. The
destination operand should be general register, the source operand can be
general register or memory.

cmove ax,bx ; move when zero flag set
cmovnc eax, [ebx] ; move when carry flag cleared

cmpxchg compares the value in the al, ax, or verb+4eax+ register with
the destination operand. If the two values are equal, the source operand
is loaded into the destination operand. Otherwise, the destination operand
is loaded into the al, ax, or eax register. The destination operand may a
general register or memory, the source operand must be a general register.

cmpxchg dl,bl ; compare and exchange with register
cmpxchg [bx],dx ; compare and exchange with memory

cmpxchg8b compares the 64-bit value in edx and eax registers with the
destination operand. If the values are equal, the 64-bit value in ecx and ebx
registers is stored in the destination operand. Otherwise, the value in the
destination operand is loaded into edx and eax registers. The destination
operand should be a quad word in memory.

cmpxchg8b [bx] ; compare and exchange 8 bytes

2.1.11 Miscellaneous instructions

nop instruction occupies one byte but affects nothing but the instruction
pointer. This instruction has no operands and doesn’t perform any operation.

ud?2 instruction generates an invalid opcode exception. This instruction
is provided for software testing to explicitly generate an invalid opcode. This
is instruction has no operands.

2.1. INTEL ARCHITECTURE INSTRUCTIONS 31

xlat replaces a byte in the al register with a byte indexed by its value
in a translation table addressed by bx or ebx. The operand should be a byte
memory addressed by bx or ebx with any segment prefix. This instruction
has also a short form xlatb which has no operands and uses the bx or ebx
address in the segment selected by ds depending on the current code setting.

1ds transfers a pointer variable from the source operand to ds and the
destination register. The source operand must be a memory operand, and
the destination operand must be a general register. The ds register receives
the segment selector of the pointer while the destination register receives the
offset part of the pointer. les, 1fs, 1gs and 1lss operate identically to 1ds
except that rather than ds register the es, fs, gs and ss is used respectively.

1ds bx, [si] ; load pointer to ds:bx

lea transfers the offset of the source operand (rather than its value) to
the destination operand. The source operand must be a memory operand,
and the destination operand must be a general register.

lea dx, [bx+si+1] ; load effective address to dx

cpuid returns processor identification and feature information in the eax,
ebx, ecx, and edx registers. The information returned is selected by entering
a value in the eax register before the instruction is executed. This instruction
has no operands.

enter creates a stack frame that may be used to implement the scope
rules of block—structured high-level languages. A leave instruction at the
end of a procedure complements an enter at the beginning of the procedure
to simplify stack management and to control access to variables for nested
procedures. The enter instruction includes two parameters. The first pa-
rameter specifies the number of bytes of dynamic storage to be allocated on
the stack for the routine being entered. The second parameter corresponds
to the lexical nesting level of the routine, it can be in range from 0 to 31.
The specified lexical level determines how many sets of stack frame pointers
the CPU copies into the new stack frame from the preceding frame. This
list of stack frame pointers is sometimes called the display. The first word
(or double word when code is 32-bit) of the display is a pointer to the last
stack frame. This pointer enables a leave instruction to reverse the action of
the previous enter instruction by effectively discarding the last stack frame.
After enter creates the new display for a procedure, it allocates the dynamic
storage space for that procedure by decrementing esp by the number of bytes
specified in the first parameter. To enable a procedure to address its display,
enter leaves bp (or ebp) pointing to the beginning of the new stack frame. If

32 CHAPTER 2. INSTRUCTION SET

the lexical level is zero, enter pushes bp (or ebp), copies sp to bp (or esp to
ebp) and then subtracts the first operand from esp. For nesting levels greater
than zero, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer.

enter 2048,0 ; enter and allocate 2048 bytes on stack

2.1.12 System instructions

lmsw loads the operand into the machine status word (bits 0 through 15 of
cr0 register), while smsw stores the machine status word into the destination
operand. The operand should be a word, it can be a general register or
memory.

Imsw ax ; load machine status from register
smsw [bx] ; store machine status to memory

lgdt and 1lidt instructions load the values in operand into the global
descriptor table register or the interrupt descriptor table register respectively.
sgdt and sidt store the contents of the global descriptor table register or the
interrupt descriptor table register in the destination operand. The operand
should be a 6 bytes in memory.

lgdt [ebx] ; load global descriptor table

11dt loads the operand into the segment selector field of the local de-
scriptor table register and sldt stores the segment selector from the local
descriptor table register in the operand. 1tr loads the operand into the seg-
ment selector field of the task register and str stores the segment selector
from the task register in the operand. Rules for operand are the same as for
the 1lmsw instruction.

lar loads the access rights from the segment descriptor specified by the
selector in source operand into the destination operand and sets the ZF flag.
The operands can be both words or double words. The source operand may
be a general register or memory. The destination operand should be a general
register.

lar ax, [bx] ; load access rights into word
lar eax,edx ; load access rights into double word

1s1 loads the segment limit from the segment descriptor specified by the
selector in source operand into the destination operand and sets the ZF flag.
Rules for operand are the same as for the lar instruction.

2.1. INTEL ARCHITECTURE INSTRUCTIONS 33

verr and verw verify whether the code or data segment specified with
the operand is readable or writable from the current privilege level. The
operand should be a word, it can be general register or memory. If the
segment is accessible and readable (for verr) or writable (for verw) the ZF
flag is set, otherwise it’s cleared. Rules for operand are the same as for the
11dt instruction.

arpl compares the RPL (requestor’s privilege level) fields of two segment
selectors. The first operand contains one segment selector and the second
operand contains the other. If the RPL field of the destination operand is
less than the RPL field of the source operand, the ZF flag is set and the
RPL field of the destination operand is increased to match that of the source
operand. Otherwise, the ZF flag is cleared and no change is made to the
destination operand. The destination operand can be a word general register
or memory, the source operand must be a general register.

arpl bx,ax ; adjust RPL of selector in register
arpl [bx],ax ; adjust RPL of selector in memory

clts clears the TS (task switched) flag in the cr0 register. This instruc-
tion has no operands.

lock prefix causes the processors bus—lock signal to be asserted during
execution of the accompanying instruction. In a multiprocessor environment,
the bus—lock signal insures that the processor has exclusive use of any shared
memory while the signal is asserted. The lock prefix can be prepended
only to the following instructions and only to those forms of the instructions
where the destination operand is a memory operand: add, adc, and, btc,
btr, bts, cmpxchg, cmpxchg8b, dec, inc, neg, not, or, sbb, sub, xor, xadd
and xchg. If the lock prefix is used with one of these instructions and the
source operand is a memory operand, an undefined opcode exception may be
generated. An undefined opcode exception will also be generated if the lock
prefix is used with any instruction not in the above list. The xchg instruction
always asserts the bus—lock signal regardless of the presence or absence of
the lock prefix.

hlt stops instruction execution and places the processor in a halted state.
An enabled interrupt, a debug exception, the BINIT, INIT or the RESET
signal will resume execution. This instruction has no operands.

invlpg invalidates (flushes) the TLB (translation lookaside buffer) entry
specified with the operand, which should be a memory. The processor de-
termines the page that contains that address and flushes the TLB entry for
that page.

rdmsr loads the contents of a 64-bit MSR (model specific register) of the
address specified in the ecx register into registers edx and eax. wrmsr writes

34 CHAPTER 2. INSTRUCTION SET

the contents of registers edx and eax into the 64-bit MSR of the address
specified in the ecx register. rdtsc loads the current value of the processors
time stamp counter from the 64-bit MSR into the edx and eax registers.
The processor increments the time stamp counter MSR every clock cycle
and resets it to 0 whenever the processor is reset. rdpmc loads the contents
of the 40-bit performance monitoring counter specified in the ecx register
into registers edx and eax. These instructions have no operands.

wbinvd writes back all modified cache lines in the processors internal
cache to main memory and invalidates (flushes) the internal caches. The in-
struction then issues a special function bus cycle that directs external caches
to also write back modified data and another bus cycle to indicate that the
external caches should be invalidated. This instruction has no operands.

2.1.13 FPU instructions
]

2.1.14 MMX instructions
L]

2.1.15 SSE instructions
]

2.2 Control directives

This section describes the directives that control the assembly process, they
are processed during the assembly and may cause some blocks of instructions
to be assembled differently or not assembled.

2.2.1 Repeating blocks of instructions

times directive repeats one instruction specified number of times. It should
be followed by numerical expression specifying number of repeats and the
instruction to repeat (optionally colon can be used to separate number and
instruction). When special symbol % is used inside the instruction, it is equal
to the number of current repeat. For example times 5 db % will define five
bytes with values 1, 2, 3, 4, 5. Recursive use of times directive is also allowed,
so times 3 times % db % will define six bytes with values 1, 1, 2, 1, 2, 3.

2.2. CONTROL DIRECTIVES 35

repeat directive repeats the whole block of instructions. It should be
followed by numerical expression specifying number of repeats. Instructions
to repeat are expected in next lines, ended with the end repeat directive,
for example:

repeat 8
mov byte [bx],%
inc bx

end repeat

The generated code will store byte values from one to eight in the memory
addressed by bx register.

Number of repeats can be zero, in that case the instructions are not
assembled at all.

2.2.2 Conditional assembly

if directive causes come block of instructions to be assembled only under
certain condition. It should be followed by logical expression specifying the
condition, instructions in next lines will be assembled only when this condi-
tion is met, otherwise they will be skipped. The optional else if directive
followed with logical expression specifying additional condition begins the
next block of instructions that will be assembled if previous conditions were
not met, and the additional condition is met. The optional else directive
begins the block of instructions that will be assembled if all the conditions
were not met. The end if directive ends the last block of instructions.

The logical expression consist of logical values and logical operators. The
logical operators are ~ for logical negation, & for logical and, | for logical or.
Logical value can be a numerical expression, it will be false if it is equal to
zero, otherwise it will be true. Two numerical expression can be compared
using one of the following operators to make the logical value: = (equal), <
(less), > (greater), <= (less or equal), >= (greater or equal), <> (not equal).
The eq compares any two symbols whether they are exact the same. The in
operator checks whether given symbol is a member of the list of symbols fol-
lowing this operator, the list should be enclosed between < and > characters,
its members should be separated with commas.

The following simple example uses the count constant that should be
defined somewhere in source:

if count>0
mov cXx,count
rep movsb
end if

36 CHAPTER 2. INSTRUCTION SET

These two assembly instructions will be assembled only if the count constant
is greater than 0.

The next example is more complex and assumes that the symbolic con-
stant reg is defined:

if reg in <cs,ds,es,fs,gs,ss>
mov dx,reg
add ax,dx
shl ax,1
else if reg eq ax
shl ax,2
else
add ax,reg
shl ax,1
end if

The first block of instructions will be assembled only if the value of reg is
segment register, otherwise the second or third block will assembled whether
the value of reg is ax register or not.

2.2.3 Other directives

virtual defines virtual data at specified address. This data won’t be in-
cluded in the output file, but labels defined there can be used in other parts
of source. This directive can be followed by at operator and the numerical
expression specifying the address for virtual data, otherwise is uses current
address, the same as virtual at $. Instructions defining data are expected
in next lines, ended with end virtual directive.

This directive can be used to create union of some variables, for example:

GDTR dp 7

virtual at GDTR
GDT_limit dw 7
GDT_address dd 7

end virtual

It defines two labels for parts of the 48-bit variable at GDTR address.
It can be also used to define labels for some structures addressed by a
register, for example:

virtual at bx
LDT_limit dw 7
LDT_address dd 7
end virtual

2.2. CONTROL DIRECTIVES 37

With such definition instruction mov ax, [LDT_limit] will be assembled to
mov ax, [bx].

Declaring defined data values or instructions inside the virtual block
would also be useful, because the load directive can be used to load the
values from the virtually generated code into a constants. This directive
should be used after the code it loads but before the virtual block ends,
because it can only load the values from the same code space. For example:

virtual at O

XOr eax,eax

and edx,eax

load zeroq dword from O
end virtual

The above piece of code will define the zeroq constant containing four bytes
of the machine code of the instructions defined inside the virtual block.

display directive displays the message at the assembly time. It should
be followed by the quoted strings or byte values, separated with commas. It
can be used to display values of some constants, for example:

d1 ’0’+ $§ shr 12 and OFh
d2 = ’0’+ $ shr 8 and OFh
d3 = ’0’+ $ shr 4 and OFh
d4 = ’0’+ $ and OFh

if di1>’9’

dl =d1l + ’A’-’9°-1
end if
if d2>’9’

d2 =d2 + ’A’-’9°-1
end if
if d43>’9’

d3 =d3 + ’A’-’9°-1
end if
if d4>’9’

d4d = d4 + A’-’9°-1
end if

display ’Current offset is 0x’,d1,d2,d3,d4,13,10

Instructions before the display directive calculate four digits of 16-bit value
and convert them into characters for displaying.

38 CHAPTER 2. INSTRUCTION SET

2.3 Preprocessor directives

All preprocessor directives are processed before the main assembly process,
and therefore are not affected by the control directives. At this time also all
comments are stripped out.

2.3.1 Including source files

include directive includes the specified source file at the position where it
is used. It should be followed by the quoted name of file that should be
included, for example:

include ’macros.inc’

The whole included file is preprocessed before preprocessing the lines next to
the line containing the include directive. There are no limits to the number
of included files as long as they fit in memory.

The quoted path can contain environment variables enclosed within %
characters, they will be replaced with their values inside the path, both the
\ and / characters are allowed as a path separators. It concerns also paths
given with the file and load directives or in the command line.

2.3.2 Symbolic constants

The symbolic constants are different from the numerical constants, before
the assembly process they are replaced with their values everywhere in source
lines after their definitions, and anything can become their values.

The definition of symbolic constant consists of name of the constant fol-
lowed by the equ directive. Everything that follows this directive will become
the value of constant. If the value of symbolic constant contains other sym-
bolic constants, they are replaced with their values before assigning this value
to the new constant. For example:

d equ dword
NULL equ d O
d equ edx

After there three definitions the value of NULL constant is dword O and
the value of d is edx. So, for example, push NULL will be assembled as
push dword O and push d will be assembled as push edx.

restore directive allows to get back previous value of redefined symbolic
constant. It should be followed by one more names of symbolic constants,
separated with commas. So restore d after the above definitions will give

2.3. PREPROCESSOR DIRECTIVES 39

d constant back the value dword. If there was no constant defined of given
name, restore won’t cause an error, it will be just ignored.

Symbolic constant can be used to adjust the syntax of assembler to per-
sonal preferences. For example the following set of definitions provides the
handy shortcuts for all the size operators:

b equ byte
equ word
equ dword
equ pword
equ fword
equ qword
equ tword
equ dqword

Mot QO T Qo

Because symbolic constant may also have an empty value, it can be used
to allow the syntax with offset word before any address value:

offset equ

After this definition mov ax,offset char will be valid construction for copy-
ing the offset of char variable into ax register, because offset is replaced
with an empty value, and therefore ignored.

2.3.3 Macroinstructions

macro directive allows you to define your own complex instructions, called
macroinstructions, using which can greatly simplify the process of program-
ming. In its simplest form it’s similar to symbolic constant definition. For
example the following definition defines a shortcut for the test al,OxFF
instruction:

macro tst {test al,OxFF}

After the macro directive there is a name of macroinstruction and then its
contents enclosed between the { and } characters. You can use tst instruc-
tion anywhere after this definition and it will be assembled as test al,OxFF.
Defining symbolic constant tst of that value would give the similar result,
but the difference is that the name of macroinstruction is recognized only
as an instruction mnemonic. Also, macroinstructions are replaced with cor-
responding code even before the symbolic constants are replaced with their
values. So if you define macroinstruction and symbolic constant of the same
name, and use this name as an instruction mnemonic, it will be replaced

40 CHAPTER 2. INSTRUCTION SET

with the contents of macroinstruction, but it will be replaced with value if
symbolic constant if used somewhere inside the operands.

The definition of macroinstruction can consist of many lines, because {
and } characters don’t have to be in the same line as macro directive. For
example:

macro stosO
{
xor al,al
stosb

b

The macroinstruction stosO will be replaced with these two assembly in-
structions anywhere it’s used.

Like instructions which needs some number of operands, the macroin-
struction can be defined to need some number of arguments separated with
commas. The names of needed argument should follow the name of macroin-
struction in the line of macro directive and should be separated with commas
if there is more than one. Anywhere one of these names occurs in the contents
of macroinstruction, it will be replaced with corresponding value, provided
when the macroinstruction is used. Here is an example of a macroinstruction
that will do data alignment for binary output format:

macro align value { rb (value-1)-($+value-1) mod value }

When the align 4 instruction is found after this macroinstruction is defined,
it will be replaced with contents of this macroinstruction, and the value will
there become 4, so the result will be rb (4-1)-($+4-1) mod 4.

If a macroinstruction is defined that uses an instruction with the same
name inside its definition, the previous meaning of this name is used. Useful
redefinition of macroinstructions can be done in that way, for example:

macro mov opl,op2

{
if opl in <ds,es,fs,gs,ss> & op2 in <cs,ds,es,fs,gs,ss>
push op2
pop opl
else
mov opl,op2
end if

b

2.3. PREPROCESSOR DIRECTIVES 41

This macroinstruction extends the syntax of mov instruction, allowing both
operands to be segment registers. For example mov ds,es will be assembled
as push es and pop ds. In all other cases the standard mov instruction will
be used. The syntax of this mov can be extended further by defining next
macroinstruction of that name, which will use the previous macroinstruction:

macro mov opl,op2,op3

{
if arg3 eq
mov opl,op2
else
mov opl,op2
mov op2,o0p3
end if
b

It allows mov instruction to have three operands, but it can still have two
operands only, because when macroinstruction is given less arguments than
it needs, the rest of arguments will have empty values. When three operands
are given, this macroinstruction will become two macroinstructions of the
previous definition, so mov es,ds,dx will be assembled as push ds, pop es
and mov ds,dx.

purge directive allows removing the last definition of specified macroin-
struction. It should be followed by one or more names of macroinstructions,
separated with commas. If such macroinstruction has not been defined, you
won’t get any error. For example after having the syntax of mov extended
with the macroinstructions defined above, you can disable syntax with three
operands back by using purge mov directive. Next purge mov will disable
also syntax for two operands being segment registers, and all the next such
directives will do nothing.

If after the macro directive you enclose some group of arguments’ names
in square brackets, it will allow giving more values for this group of arguments
when using that macroinstruction. Any more argument given after the last
argument of such group will begin the new group and will become the first
argument of it. That’s why after closing the square bracket no more argument
names can follow. The contents of macroinstruction will be processed for each
such group of arguments separately. The simplest example is to enclose one
argument name in square brackets:

macro stoschar [char]

{

mov al,char

42 CHAPTER 2. INSTRUCTION SET

stosb

+

This macroinstruction accepts unlimited number of arguments, and each
one will be processed into these two instructions separately. For example
stoschar 1,2,3 will be assembled as the following instructions:

mov al,l1
stosb
mov al,?2
stosb
mov al,3
stosb

There are some special directives available only inside the definitions of
macroinstructions. local directive defines local names, which will be re-
placed with unique values each time the macroinstruction is used. It should
be followed by names separated with commas. This directive is usually
needed for the constants or labels that macroinstruction defines and uses
internally. For example:

macro movstr

{
local move

move:
lodsb
stosb
test al,al
jnz move

b

Each time this macroinstruction is used, move will become other unique name
in its instructions, so you won’t get an error you normally get when some
label is defined more than once.

forward, reverse and common directives divide macroinstruction into
blocks, each one processed after the processing of previous is finished. They
differ in behavior only if macroinstruction allows multiple groups of argu-
ments. Block of instructions that follows forward directive will be processed
for each group of arguments, from first to last — exactly like the default block
(not preceded by any of these directives). Block that follows reverse di-
rective will be processed for each group of argument in reverse order — from
last to first. Block that follows common directive is processed only once, com-
monly for all groups of arguments. Local name defined in one of the blocks

2.3. PREPROCESSOR DIRECTIVES 43

is available in all the following blocks when processing the same group of
arguments as when it was defined, and when it is defined in common block
it is available in all the following blocks not depending on which group of
arguments is processed.

Here is an example of macroinstruction that will create the table of ad-
dresses to strings followed by these strings:

macro strtbl name, [string]
{
common
label name dword
forward
local label
dd label
forward
label db string,0
}

First argument given to this macroinstruction will become the label for table
of addresses, next arguments should be the strings. First block is processed
only once and defines the label, second block for each string declares its local
name and defines the table entry holding the address to that string. Third
block defines the data of each string with the corresponding label.

The directive starting the block in macroinstruction can be followed by
the first instruction of this block in the same line, like in the following exam-
ple:

macro stdcall proc, [arg]
{
reverse push arg
common call proc

3

This macroinstruction can be used for calling the procedures using STD-
CALL convention, arguments are pushed on stack in the reverse order. For
example stdcall foo,1,2,3 will be assembled as:

push 3
push 2
push 1
call foo

44 CHAPTER 2. INSTRUCTION SET

If some name inside macroinstruction has multiple values (it is either one
of the arguments enclosed in square brackets or local name defined in the
block following forward or reverse directive) and is used in block following
the common directive, it will be replaced with all of its values, separated with
commas. For example the following macroinstruction will pass all of the
additional arguments to the previously defined stdcall macroinstruction:

macro invoke proc, [arg]
{ common stdcall [proc],arg }

It can be used to call indirectly (by the pointer stored in memory) the pro-
cedure using STDCALL convention.

Inside macroinstruction also special operator # can be used. This operator
causes two names to be concatenated into one name. It can be useful, because
it’s done after the arguments and local names are replaced with their values.
The following macroinstruction will generate the conditional jump according
to the cond argument:

macro jif opl,cond,op2,label
{
cmp opl,op2
j#cond label
}

For example jif ax,ae,10h,exit will be assembled as cmp ax,10h and
jae exit instructions.

To make macroinstruction behaving differently when some of the argu-
ments are a quoted strings or not, you can utilize the fact that assembler
distinguishes the separate quoted strings from the quoted strings inside nu-
merical expressions, but it doesn’t distinguish the numerical expression pre-
ceded by the + sign from the same expression without a sign. So the string
preceded by the + sign will be treated as a numerical expression and so won’t
be symbolically equal to the same string without any sign, while any other
value will be symbolically equal to the same expression preceded by the +
sign. Here’s an example macroinstruction utilizing this feature:

macro message arg
{
if arg eq +arg
mov dx,arg
else
local str
jmp @f

2.3. PREPROCESSOR DIRECTIVES 45

str db arg,0Dh,0Ah,24h

0Q:

mov dx,str
end if

mov ah,9

int 21h

¥

The above macro is designed for displaying messages in DOS programs.
When the argument of this macro is some number of label, the string from at
address is displayed, but when the argument is a quoted string, the created
code will display that string followed by the carriage return and line feed.

2.3.4 Structures

struc directive is a special variant of macro directive that is used to define
data structures. Macroinstruction defined using the struc directive must
be preceded by a label (like the data definition directive) when it’s used.
This label will be also attached at the beginning of every name starting with
dot in the contents of macroinstruction. The macroinstruction defined using
the struc directive can have the same name as some other macroinstruction
defined using the macro directive, structure macroinstruction won’t prevent
the standard macroinstruction being processed when there is no label before
it and vice versa. All the rules concerning standard macroinstructions apply
to structure macroinstructions.
Here is the sample of structure macroinstruction:

struc point x,y

{
.x dw x
.y dw y
}

For example my point 7,11 will define structure labelled my, consisting of
two variables: my.x with value 7 and my.y with value 11.

Next example shows how to extend the data definition directive db with
ability to calculate the size of defined data by using the structure macroin-
struction:

struc db [datal
{

common

46 CHAPTER 2. INSTRUCTION SET

label .data byte
db data
.size = $-.data

b

With such definition for example msg db ’Hello!’,13,10 will define also
msg.size constant, equal to the size of defined data in bytes and also addi-
tional label msg.data, which will be recognized as a label for data of byte
size.

Defining data structures addressed by registers or absolute values should

be done using the virtual directive with structure macroinstruction (see
2.2.3).

2.4 Formatter directives

format directive followed by the format identifier allows to select the out-
put format. This directive should be put at the beginning of the source.
Default output format is a flat binary file, it can also be selected by using
format binary directive.

usel6 and use32 directives force the assembler to generate 16-bit or
32-bit code, omitting the default setting for selected output format.

org directive sets address at which the following code is expected to
appear in memory. It should be followed by numerical expression specifying
the address.

Below are described different output formats with the directives specific
to these formats.

2.4.1 MZ executable

To select the MZ output format, use format MZ directive. The default code
setting for this format is 16-bit.

segment directive defines a new segment, it should be followed by label,
which value will be the number of defined segment, optionally use16 or use32
word can follow to specify whether code in this segment should be 16-bit or
32-bit. The origin of segment is aligned to paragraph (16 bytes). All the
labels defined then will have values relative to the beginning of this segment.

entry directive sets the entry point for MZ executable, it should be fol-
lowed by the far address (name of segment, colon and the offset inside seg-
ment) of desired entry point.

stack directive sets up the stack for MZ executable. It can be followed by
numerical expression specifying the size of stack to be created automatically

2.4. FORMATTER DIRECTIVES 47

or by the far address of initial stack frame when you want to set up the stack
manually. When no stack is defined, the stack of default size 4096 bytes will
be created.

heap directive should be followed by a 16-bit value defining maximum
size of additional heap in paragraphs (this is heap in addition to stack and
undefined data). Use heap 0 to always allocate only memory program really
needs. Default size of heap is 65535.

2.4.2 Portable Executable

To select the Portable Executable output format, use format PE directive,
it can be followed by additional format settings: use console, GUI or native
operator selects the target subsystem (floating point value specifying subsys-
tem version can follow), DLL marks the output file as a dynamic link library.
Then can follow the at operator and the numerical expression specifying the
base of PE image and then optionally on operator followed by the quoted
string containing file name selects custom MZ stub for PE program (when
specified file is not a MZ executable, it is treated as a flat binary executable
file and converted into MZ format). The default code setting for this format
is 32-bit.

section directive defines a new section, it should be followed by quoted
string defining the name of section, then one or more section flags can fol-
low. Available flags are: code, data, readable, writeable, executable,
shareable, discardable. Among with flags also on of special PE data
identifiers can be specified to mark the whole section as a special data, pos-
sible identifiers are export, import, resource and fixups. If the section
is marked to contain fixups, they are generated automatically and no more
data needs to be defined in this section. The origin of section is aligned to
page (4096 bytes).

entry directive sets the entry point for Portable Executable, the value of
entry point should follow.

stack directive sets up the size of stack for Portable Executable, value of
stack reserve size should follow, optionally value of stack commit separated
with comma can follow. When stack is not defined, it’s set by default to size
of 4096 bytes.

heap directive chooses the size of heap for Portable Executable, value of
heap reserve size should follow, optionally value of heap commit separated
with comma can follow. When no heap is defined, it is set by default to size
of 65536 bytes, when size of heap commit is unspecified, it is by default set
to zero.

48 CHAPTER 2. INSTRUCTION SET

data directive begins the definition of special PE data, it should be fol-
lowed by one of the data identifiers (export, import, resource or fixups)
or by the number of data entry in PE header. The data should be defined
in next lines, ended with end data directive. When fixups data definition
is chosen, they are generated automatically and no more data needs to be

defined there.

2.4.3 Common Object File Format

To select Common Object File Format, use format COFF or format MS COFF
directive whether you want to create simple or Microsoft COFF file. The
default code setting for this format is 32-bit.

section directive defines a new section, it should be followed by quoted
string defining the name of section, then one or more section flags can fol-
low. Available flags are: code and data for both COFF variants, readable,
writeable, executable, shareable and discardable only for Microsoft
COFF variant. The origin of section is aligned to page (4096 bytes).

extrn directive defines the external symbol, it should be followed by the
name of symbol and optionally the size operator specifying the size of data
labelled by this symbol.

public directive declares the existing symbol as public, it should be fol-
lowed by the name of symbol.

Chapter 3

Tutorials

49

